Simulation/Games for Learning Vol 18 No 1 March 1988

author at: Dept. of Psychology, University of Texas, Austin, TX 78712, or call (512)
471-9228.

George W Holden

Assistant Professor of Psychology
University of Texas

Austin, Texas, USA

68

Simulation/Games for Learning Vol 18 No 1 March 1988

ITERATIVE PRISONER'S DILEMMA: A PROGRAM
FOR INSTRUCTIONAL AND EXPERIMENTAL USE

Jeffrey Hart and Marc Simon, Indiana University, USA

Abstract; This paper provides an introduction to a program called DILEMMA,

written in Turbo Pascal for the IBM-PC, which illustrates the iterative prisoner's
dilemma (henceforth, PD) game. The PD is a game theoretic model that has
many applicationsin the social sciences, particularly in our field of international

relations. It can be applied to arms races, mobilization races, alliance cohesion,

decisionsto initiate and escalate wars, or any collective goods problem.

Keywords: Prisoner's Dilemma, international relations, computer

Introduction

The general format of the PD model involves the decision of two actors
who each have two choices - cooperation or nhoncooperation
(defection). The outcome or payoff of each actor's decision is dependent
on what the other decides. Taking a two-nation arms race scenario, if
both nations cogperate and freeze their current armaments level, the
payoff in reduced tensions and money saved could be represented as
(2,2). If one side builds up heavily while the other side cooperates and
freezesits arsenal, the defecting nation gains much political and military
clout while the cooperating nation is now the "sucker" who appears
weak and vulnerable to attack (10, 10). Finally, if both sides build
(because each wants to avoid the sucker payoff), the payoff to both
nations represents increased tensions and money spent on defense (-6,-
6). The numerical value of the payoffsis meaningless - what is
important is the rank order of the payoffs. This ordering creates
incentives for an actor to defect, even though both players would be
better off if they each cooperate. In an iterated game, the dilemma
becomes finding ways to build trust so that mutual cooperation can be
achieved.

DILEMMA was developed as an instructional tool to illustrate the
strategic interdependence and nonzero-sum incentives present in many
decision-making situations in politics. Though the PD seems fairly
straightforward when first presented to students, many have difficulty
obtaining a deeper understanding of how the game works in practice;
these students are therefore skeptical of the relevance of the PD in
international relations. This situation presents an ideal opportunity for
the use of instructional software - by actually playing the game against

69

Simulation/Games for Learning Vol 18 No 1 March 1988

different opponents with different decision-making strategies and under
various time and payoff constraints, students begin to realize that this
model is not as unconnected with real-world situations as they once
thought. This paper will discuss the design and use of DILEMMA as
well as some general criteria for the use of both instructional and
experimental software in the social sciences.

A brief description of the program

The user is asked via a series of menus to record his/her initials so that a
record of play can be kept in a separate disk file, to keep or change the
original payoff matrix, to decide how many iterations to play (although
the program leaves the option of keeping this uncertain), and to choose
among five machine-generated players. The program keeps track of all
moves, and at the end of each round it displays the choices made by the
user and his/her opponent, along with a running tally of the cumulative
scores of both players.

The first two screens of DILEMMA describe the story behind the game

and give the "mobilization race" application mentioned above.
Following this brief introduction, the initial matrix of outcomes is

displayed:

pattner/opponent's move

C D
| |
€ -10,0
your ——————————————————
move ‘ | |
D | 0,-10 | -9,-D |

After these on-screen instructions appear, the user is asked if he/she
wishes to change the payoffs. As long as the relationship of the payoffs
remains in the form of a PD, any change is allowed. The user then selects
a partner opponent and, if desired, the number of rounds to play. The
five machine-generated opponents have been given the whimsical names
of 1) Joseph Stalin, 2) Marvin Miller, 3) Tina Tatter, 4) Larry Lawrence,
and 5) Michael Marshmallow. Joseph Stalin always defects, Michael
Marshmallow always cooperates, and Larry Lawrence plays randomly.
This astute user will quickly learn that the two interesting opponents are
Marvin Miller and Tina Tatter.

70

Simulation/Games for Learning Vol 18 No 1 March 1988

Tina Tatter uses the “friendly' tit-for-tat strategy recommended by
Axelrod (1984). This strategy involves cooperating on the first move and
then simply echoing what the other player did on the previous move
from then on. Axelrod demonstrates in his book that the friendly
tit-for-tat strategy scores highest (on the average) against all other
programmed strategies.

Marvin Miller uses a version of an ‘unfriendly' tit-for-tat strategy: he
defects on the first two moves, and then cooperates only when his
opponent cooperates on the two previous moves. To the user who never
cooperates twice in a row, Marvin plays the same as Joseph Stalin;
however, if the user is persistent, the mutual cooperation outcome can
be achieved.

The actual play of the game is quite simple: the computer asks the user to
type "C" or "D", it gives the opponent's response, the payoff to each
player, and the cumulative total points for each player. These scores are

also written into a file that can be examined later or handed in to verify
completion of an assignment.

The first version of DILEMMA was written on a VAX. It was modified
for Turbo Pascal and the IBM-PC in December of 1984, and then
revised again in January 1985. The program disk is not copy-protected
and both compiled and source code are included for those who might
wish to modify the program for special applications. DILEMMA has
many strengths 'and weaknesses; its simplicity ranks high among its
strengths. The following sections describe some design considerations,
instructional use, and possible improvements for DILEMMA in the
context of general criteria for educational software.

Educational use

The program is designed for use by undergraduates at colleges or
universities, but it is simple enough to be used by high school students
with some mathematical background. DILEMMA has been used as one
of a set of required computer simulations in undergraduate courses

(Introduction to World Politics, American Foreign Policy). Students
are required to write short papers commenting upon and criticizing the

computer programs they use. This has proven to be an excellent way of
obtaining feedback on the design of the programs, as well as a means of
forcing the student to think seriously about how the program applies to
topics in the course.

The psychological nature of the prisoner's dilemma model is perhaps the
most difficult aspect to get across to students in a lecture format. How
should ' they view the other player in the game - as a partner or
adversary? This is deliberately left ambiguous in the program to
encourage students to think about this issue. Students nearly universally

7

Simulation/Games for Learning Vol 18 No 1 March 1988

report that they found the program challenging and enlightening, while
expressing some puzzlement about how to maximize their scores while
still defeating their opponent. The incentives to cooperate or defect in an
iterative game depend largely on the playet's conception of the
opponent. If the user views the opponent as an adversary, he/she will be
more concerned with receiving a higher score than their foe, rather than
a high overall score. The user will be less likely to trust the adversary,
and will thus be less likely to attain a series of mutual cooperation
outcomes. If the user can come to view the opponent as a partner or as
an adversary who can be dealt with, then the mutual cooperation
outcome becomes an achievable goal. Axelrod (1984, p. 176) argues that
the tit-for-tat strategy's reciprocity is a means of tacitly communicating
with an opponent and encouraging the development of a stable
cooperative outcome.

In classes where this DILEMMA program was not used, we have found
that many students never grasp the subtleties of the game. After playing
the game, however, students find these ideas much easier to handle. In
other words, the idea of a mixed-motive iterative game is a hard one to
internalize, and an interactive computer program is a very good way of
getting it across.

General criteria for instructional programs

For instructional computer programs, the following characteristics are
desirable: 1) very readable instructions (preferably on-screen rather
than in separate documentation); 2) the program should be highly
interactive; 3) liberal use should be made of graphics and humor to keep
the user motivated; 4) the content of the program should provide new
insights into an important academic subject; 5) the program should
allow the user to control the length of play to some extent; 6) the
program should not be copy protected; and 7) the program should be
user-friendly.

The need for instructions to be clear and simple is obvious. Perhaps
what is not so obvious is that instructions for use be incorporated in the
program itself, and that separate documents (which can be lost or
stolen) should be used mainly to provide supplemental information. The
reason for this is to make the program as accessable as possible to the
student - they need to interact with the program itself and not spend
time referring to a manual before and during the game or simulation.
This may seem obvious to the reader, but be assured that it is often
ignored in instructional software.

A highly interactive computer environment is important for instruc-
tional software so that the user and computer communicate, forcing the
user to become more involved with the program and to think about the

72

Simulation/Games for Learning Vol 18 No 1 March 1988

subject material. This means that programs should use frequent queries,
and that the user should get quick responses to his/her answers. Long

delays create boredom, and can mentally distance the user from the
program.

Graphics and humor are keys to the success of arcade games, and there
is no reason why they cannot be used with equal success in instructional
programs. Graphics are important to motivate the user, though they can
also be counterproductive. We have found some programs with
beautiful graphics that take a long time to paint on the screen; this

causes the user to become passive, and the motivating aspect of the
graphic is lost.

Again, long delays, especially in the middle of the program, cause a
decrease in interactivity that reduces the effectiveness of the instructional
program. To avoid this, we recommend using both interactive
programming techniques and using computer languages with high
speeds of operation. Turbo Pascal is one of these, while Microsoft
BASIC is probably not. (New BASIC languages, such as BBC BASIC,
are available that run more quickly, however.) DILEMMA uses a design
that requires the user to respond frequently to computer queries; it is
written 1n Turbo Pascal, and it tries to add bits of humor where possible.

It is very weak on graphics, however, and this may cause some students
to find 1t boring.

The content of instructional software must be sufficiently deep and/or
abstract that it takes the student beyond the realm of common
knowledge. One way to do this is to simulate some relatively complex
phenomenon, such as the navigation of a supertanker in narrow waters,
so that users can learn through their own trials and error about the
pitfalls of an unfamiliar activity. Another way is to allow the student to
interact with a model or simulation in a way that allows them to
creatively explore their own ideas and strategies, while the program
quickly performs the mathematical drudgery. A third way, used in
DILEMMA, is to take a simplification of reality and allow the student
to explore the ramifications of that simplification, using the interactive
computer environment to speed the process of learning.

The fifth and sixth criteria are especially important for the use of
instructional softwarte in the university setting. In practice, these
programs are often made available to students in libraries. They can be
purchased on disks, but this is sometimes too expensive for students who
are already laboring under heavy debts to attend college. In addition,
few students can afford to spend more than an hour or an hour and a
half using a piece of instructional software. We have found it to be more
conducive to learning if users are allowed to interrupt the play and
return to it later if the program requires lengthy playing times. In

73

Simulation/Games for Learning Vol 18 No 1 March 1988

addition, the absence of copy protection appears to be @ sine qua non for
the depositing of disks in libraries. Most libraries will refuse
responsibility for reimbursing instructors for copy-protected software
that has been lost, stolen, or destroyed in use.

Finally, the user friendliness requirement, though a bit of a cliche, is
violated often enough in instructional software to be noted here. By user
friendly we mean not only easy to read instructions, abundant graphics,
humor, etc. The most important requirement for instructional software
is that it does not crash, even in response to ‘hostile' users. The program
should be in a format that allows easy start-up instructions, e.g., "put
the disk in the left disk drive and reboot." The input/output routines
need to be able to handle all but the most serious user errors. Responses
should be allowed ecither in small or upper-case letters, and should not
involve more than one word if possible. Non-computer oriented
students may become irate if the program will not work for them; they
will either give up or take vengeance on the disk. This is another reason
to avoid copy-protection. We had a case where the only copy of a
copy-protected disk was accidently destroyed by a student, thus
depriving the rest of the class from using the program.

We feel that DILEMMA adequately addresses most of these criteria,

though we realize that there are many possible ways of improving the

program. Some areas for possible improvement are: 1) allow users to

play other games besides prisoner's dilemma, e.g., chicken, 2) put more

graphics into the program (e.g., provide a graph of the cumulative scores

of the two players after each play), 3) allow users to send "messages" ‘to'
the computer opponent, 4) replace Joseph Stalin and Michael

Marshmallow with more realistic opponents, and 5) allow users to play
against other human opponents in a network of PCs. We hope to

provide an updated version of DILEMMA that will include these

improvements before the end of 1987.

General criteria for experimental software

To design a program for experimental use, the software writer should try
to meet the needs of the specific experimenter. This makes a general
experimental software package difficult to write. We offer the following
suggestions for experimental software writers: 1) use standardized data
formats for files that record user interactions, 2) allow the experimental
conditions to be altered easily, 3) allow both open-ended and closed-
ended responses to computer queties, 4) provide for internal testing of
measurement validity and error-checking, and 5) (as always) make the
program easy to use.

Because DILEMMA was primarily designed for instructional purposes,
it does not score high on these criteria. However, our experience with

74

Simulation/Games for Learning Vol 18 No 1 March 1988

DILEMMA suggests that one may be better-off modifying simple
programs for experimental use rather than creating very complex
software which is designed to adapt to a wide variety of experimental
conditions. For example, we just received an inquiry from a social
psychologist who is interested in the motives or intentions attributed to
machine-generated opponents in iterated PD games. This person would
like to video-tape subjects while they are playing the iterative PD on an
IBM-PC. Since the code and data structures of DILEMMA are very
simple, it can be adapted easily to suit the needs of various experiments:
human-human play could be created, the strategies of computer
opponents could be altered, and the results which are written onto a
separate disk file could be added to or changed completely.

One strategy, then, for designing an experimental program is to include
the necessary basic structures along with lots of comments to make the
program understandable to anyone who wants to adapt it to their needs.
By basic structures we mean two things: 1) that the designer should
create standardized input and output from disk files, and 2) that one
should divide the "play" part of the program into discrete stages that are
independent from each other, so that they may be easily added onto or
omitted. These suggestions and those listed above may not apply to
every experimental program, but they should be seriously considered in
all designs. More and more experimenters will be using PCs and PC

networks in their laboratories, and software will have to be written with
this in mind.

Summary
This paper has described and analyzed the DILEMMA program, using

this discussion to illustrate some general criteria that we feel are
Important for the success of instructional and educational software.
DILEMMA has both instructional and experimental capabilities,

though it has been tested so far predominantly in instructional settings.

It is designed to teach students about a fairly specific but abstract type of
situation, an iterated PD game. It demonstrates some very basic
principles about how to do well in playing such games, while also

providing experimenters with a way to obtain data upon which they
might generalize about human behavior in the PD situation. DILEMMA

remains a simple but sound educational program even by today's

standards. Future educational software designers are suggested to

consider the desireable features listed here, so that their programs will be
more functional and adaptable as teaching and experimental tools.

Reference
Axelrod, R (7984) The Evolution of Cooperation New York: Basic Books

75

Simulation/Games for Learning Vol 18 No 1 March 1988

Softwar e availability

DILEMMA costs US$22, and s available from: NCSU Software, Box 8707, North
Carolina State University, Raleigh, NC 77695, USA.

Jeffrey Hart and Marc Simon
Department of Political Sciences
Indiana University

Bloomington

IN 47405, USA

ISAGA 88

The Conference of the International Simulation
and Gaming Association will be held between
16-19 August 1988 in Utrecht, The Netherlands.

THEME: THE IMPROVEMENT OF
COMPETENCE

in
¢ intercultural management and exchange
e policy formation and policy making

delivering quality services in health care,
crime prevention, education

¢ |earning
user oriented game design

For further information write to: ISAGA 88,
Faculty of Social Sciences, P.O. Box 80.140,
3508 TC Utrecht, The Netherlands.

76

¢

Simulation/Games for Learning Vol 18 No 1 March 1988

CONVERSATIONAL SIMULATION IN COMPUTER-
ASSISTED LANGUAGE LEARNING: POTENTIAL AND
REALITY

D. Wells Coleman, University of Lodz, Poland

Abstact: The potential of conversational simulations for computer-assisted
language learning (CALL) is particularly clear. But this potential remains
largely untapped. Various factors are responsible. The author identifies three

major ones: (1) many CALL authors are waiting for a 'breakthrough' in

artificial intelligence (Al) applications; (2) many CALL authors believe

conversational simulations require natural language parsers of greater power

than those needed for diagnosis of grammatical errors when, in fact, the yeperse
is true; (3) some CALL authors misunderstand the essential nature of
conversational CALL as simulation, confusing 'realistic' natural language
interaction with 'real'. The author discusses a group of programs which have
been inaccurately referred to as conversational 'simulations', defines some

criteria to clarify what kinds of CALL software should - and should not - be

included in this category, and presents a few CALL conversational simulations

as examples.

Keywords: Conversational simulation; computer-assisted language learning;
parser; artificial intelligence.

Introduction

Many -computer-assisted instruction program authors recognize the
potential of software which can engage in simulated student-computer
conversation in natural language. The potential of such conversational
simulations for computer-assisted language learning (CALL) is parti-
cularly clear (see, e.g., the discussions in Wyatt, 1984; Underwood,
1984). But this potential remains largely untapped. It would seem that
most CALL authors are content to wait for a 'breakthrough' which will
provide easy-to-use, large-scale artificial intelligence (Al) systems to
work with. The most realistic prognosis is that they will have a rather
long wait. Even the most optimistic predictions would suggest that the
kind of large-scale Al capabilities in question are decades away, at least.

In addition, some authors lack the optimism of Wyatt (1984) and
Underwood (1984). Compare, for example, Ahmad ¢z 4/ 's (1985:52)
rather bleak assessment of Winograd's (1972) SHRDLU with that of
Wyatt (1984:99). Ahmad ¢ 4/ claim to find the content of SHRDLU's
simulated conversations not 'interesting' (1985:52) and thereby seem
willing to write off this whole class of endeavor. If the simulated world
that SHRDLU can converse about is not interesting, then this is an

77

	page 1
	page 2
	page 3
	page 4
	page 5

