Technology Analysis & Strategic Management, Vol. 3, No. 2, 1991 177

CUTTING-EDGE TECHNOLOGIES

Computer Software: Strategic Industry

JOHN A. ALIC, JAMESON R. MILLER & JEFFREY A. HART

ABSTRACT US-owned firms account for more than 60% of worldwide computer software
sales, and US capability in software technology is widely viewed as well ahead of that in
other countries. However, the US lead cannot be expected to last. Nor are policies yet in
place intended to protect existing advantages. Japanese firms have demonstrated their
capabilities in hardware. Japanese executives know they must develop better software in
order (1) to use their own computer systems to best advantage, and (2) to sell more hardware
in export markets. The next several decades will see a gradual slippage in the US position,
particularly as foreign software suppliers move away from custom programming and
related services, their present focus. A narrowing gap between US and foreign industries
could prefigure a competitive challenge in software development not unlike earlier
challenges in microelectronics. Better software, in addition, will have impacts elsewhere. In
Japan’s case, for example, improvements in software should lead to productivity enhance-
ments throughout the economy, improving Japan’s ability to compete internationally.

Why Software is Critical

The cliché comes easily: information technology (IT) is to modern industrial
economies what steel was to the industrial societies of the late 19th century,
automobiles to the first half of the 20th. Computer hardware and software,
telecommunications, embedded and invisible processors deep inside other equip-
ment—these make it possible for banks to process enormous numbers of transac-
tions quickly, to serve customers automatically, and to conduct business across
international borders effortlessly and almost instantaneously. Computers help
aeroplanes fly (the two dozen processors in a Boeing 767 implement half a million
lines of code), and air traffic controllers to manage their movements. Computers
and microprocessors run machine tools, control chemical processing operations,
and schedule production operations, making factories more efficient and their
products of higher quality.

The logic embodied in intricate and often lengthy programs—i.e. in software
—tells the processors what to do. In a real sense, therefore, computing and

John A. Alic, Office of Technology Assessment, Washington, DC 20510, USA; Jameson R. Miller, Dean
Witter Reynolds Inc., San Francisco, CA 94123, USA; Jeffrey A. Hart, Indiana University,
Bloomington, IN 47405, USA. The views expressed are those of the authors, not those of the
organizations with which they are associated. Parts of the paper draw on the Office of Technology
Assessment report International Competition in Services, to which all three authors contributed; they
thank Robert R. Miller and Kenan P. Jarboe for assistance.

178 John A. Alic, Jameson R. Miller & Jeffrey A. Hart

information technology becomes a matter of software development more than
hardware technology. Software embodies the logic of complex systems: because of
this near-universal function, it is today’s critical technology and critical industry
par excellence—more so than chips, biotechnology or advanced materials. Soft-
ware epitomizes high technology for the latter part of the 20th century, and
increasingly will be the driving force in international competition among industri-
alized economies.

Both sales and R&D expenditures have been growing faster for software than
for hardware. Software needs and availability shape the design of much computer
hardware; indeed software is often integrated into hardware itself, as with
functions embedded in semiconductor chips. With computer systems increasingly
specialized and the industry increasingly fragmented (office automation, high-
reliability systems, engineering workstations), functional capabilities created
through software inevitably drive sales of broad ranges of equipment.

As a result, programming costs have become a larger proportion of total
development costs for IT systems of all types. In fact, software-intensive com-
puter-aided design methods are now necessary for developing new large-scale
integrated circuits, while much programming itself depends on computer-aided
software engineering techniques. In telecommunications, 80% or more of the
multibillion dollar cost of a new family of programmable central-office (CO)
switches goes for software. Companies producing CO switches can expect to
spend several hundred million dollars annually simply to maintain and improve
software, in particular for the software updates necessary for providing new
services.

In a broad range of manufacturing industries, engineers have also come to
rely on sophisticated computer-assisted methodologies for analysis and design of
innovative products—e.g. finite element methods for predicting the behaviour of
mechanical parts. When these products reach the factory floor, computer pro-
grams control the equipment used in processing, in shopfloor management, and
in inspection and quality control.

Software structures the interactions between people and machines in organi-
zations of all types, helping shape corporate routines, the contours of jobs,
channels of power and influence. Computer-based systems help cut costs and
create new industrial strategies throughout all advanced economies. Certainly for
the USA, software tools will be vital in improving rates of productivity growth in
both manufacturing and the services.

National security provides a final set of reasons for governments to focus on
software development. During the 1950s and 1960s, the US computer industry
gained its position of world leadership in large part because of spending by the
Department of Defense (DoD). In those years, early warning systems, intended to
detect possible attacks by aircraft or missiles, placed heavy demands on computer
technology. Today, military equipment depends on advanced digital systems for
missions ranging from fire-and-forget missiles to aircraft flight controls and
ballistic missile defence.! In the future, defence systems will depend even more
heavily on software. Military aircraft will incorporate pilots’ aids that extend the
capabilities of both man and machine by helping cope with information overload
and flight manoeuvres beyond human skill levels. Huge data-intensive informa-
tion systems such as those of the US National Security Agency create quite
different but equally demanding requirements. Today, military computing and
telecommunications rely to an increasing extent on technologies originating in

Computer Software: Strategic Industry 179

commercial industry, a trend expected to continue. In earlier years, technology
frequently flowed in the other direction.? Maintaining competitive strength in
civilian applications of computers and software will be vital for preserving
national security in the future.

At the same time, while software has been growing more important for
productivity, competitiveness, and national defence, efficiency in programming
itself has been nearly stagnant. Software generation remains a highly labour-
intensive activity, relatively more expensive as productivity improves elsewhere in
the economy.? It follows that raising productivity in software development, by
making better programs available more quickly and cheaply, holds enormous
promise for improving efficiency throughout any industrial economy.

Today, in part because of the early impetus of US defence spending, US-based
software companies can claim undisputed leadership in world markets, leadership
that has given competitive strength to other US firms. Also, because of this
derivative impact, other governments have viewed the US lead in software with a
good deal of concern. They worry that lagging software capabilities could leave
them dependent. As a result, foreign governments have been steering more
funding to software R&D. Germany, for example, has begun to shift government
support from hardware (e.g. microelectronics) to software. Even such newly
industrializing countries as Singapore and Taiwan emphasize software in their
government-sponsored programmes for catching up technologically. Also, of
course, there are such well publicized efforts of the Japanese Government as its
fifth-generation computer project, which sought, among other things, software
that would help Japanese computer manufacturers penetrate world markets more
effectively.

The Software Bottleneck

Although price/performance ratios for hardware have been declining steeply for
years, costs per line of software code remain about the same today as two decades
ago.’ This would imply that efficiency in programming has been improving at no
more than national rates of productivity increase—in striking contrast to the
extraordinary rates of improvement in hardware. The primary reason for the
software bottleneck is a lack of unifying technical concepts and proven software
engineering tools and methods. Highly skilled (and highly paid) employees must
still write and debug software on a line-by-line basis; programming remains an
extraordinarily labour-intensive activity. Although enhancements of computer
languages and programming aids—including computer-assisted software engi-
neering (CASE) tools—have helped, larger and more complicated programs
continue to stretch the capabilities of the best people and the best tools.

In addition, maintenance—upgrades as well as debugging—typically accounts
for well over half of life-cycle software costs.> Documentation is also expensive,
with the spread of computing power to new and non-expert users making good
documentation ever more important for success in the marketplace. The result? A
productivity bottleneck in programming, with software now accounting for a far
greater proportion of total system costs than in earlier years.

Given the dimensions of the bottleneck, it should be no surprise that a great
deal of software R&D has been aimed towards tools for cutting costs and speeding
common programming tasks. Much effort has gone into fourth-generation

180 John A. Alic, Jameson R. Miller & Jeffrey A. Hart

languages intended to help users tailor software to their own needs, and artificial
intelligence (AI) techniques for training programmers, as well as expert systems to
help in their work.?

The US Defense Department has been deeply concerned with slow produc-
tivity improvement in software generation. As a consumer of software, DoD far
outstrips the rest of the US government, spending some $30 billion annually for
development, procurement and maintenance of computer programs.® Defence
systems, moreover, harbour large numbers of incompatible computer systems,
many of them highly specialized and running on the software equivalent of
ancient languages. Avionics can account for half the cost of a modern military
aeroplane, with 80% of this for the software (much of it embedded in, for
instance, electronic warfare systems). Given the size of DoD’s software expendi-
tures, the inherent costs of incompatible systems, and of maintaining programs
written in several hundred languages, most of them obscure, DoD has been trying
to compel standardization on a single programming language, Ada.’

Beyond its efforts to implement Ada, DoD has sought software engineering
advances aimed at increasing productivity and controlling costs, spending nearly
$200 million annually on software research. For instance, the Department has
instituted a programme called STARS (Software Technology for Adaptable,
Reliable Systems) intended to push forward software engineering techniques,
while also supporting software and systems engineering centres at universities.
None of these efforts, however—including the push for Ada—seem likely to be
more than modestly successful, for reasons that range from controversial choices
of technology (Ada) to burdensome contracting provisions and lack of managerial
and administrative focus in the huge Pentagon bureaucracy.

The US Software Industry

Although a rapidly growing independent software industry had emerged in the
USA by the 1970s, computer hardware manufacturers—and users—continue to
develop a great deal of software. Originally viewed as a marketing carrot for
selling hardware, software has become a major source of revenue in its own right
for computer manufacturers. Sales of software have been growing more rapidly
than those of hardware (in part simply a consequence of slow productivity
growth); profit margins have also tended to be greater. At the same time,
independent firms develop and market programs for off-the-shelf sale or lease to
customers—packaged software—along with customized programs tailored to
users’ specific requirements. Often, the suppliers provide training, documenta-
tion and at least some maintenance for their software products. Worldwide
software revenues of US-based firms probably exceed $100 billion, accounting
for more than 60% of the global market.!?

In the early days of the computer industry, customers purchased hardware
and software bundled as a package from one of the half-dozen or so companies
that made computing equipment. Today, with literally thousands of firms, most
very small, developing and distributing programs, software sales are split in
roughly equal portions between hardware manufacturers and independent suppli-
ers. However, sales by the independents have been growing faster—a trend that
should continue.

Computer manufacturers mostly supply operating systems and applications

Computer Software: Strategic Industry 181

software, designed specifically for their machines, in addition to compilers,
interpreters, utilities, and the like. This is a big market in terms of value: PCs
vastly outnumber large systems, but programming the latter is many times more
costly, and costs must be covered with far fewer unit sales. As a result, the
software revenues of a number of the larger hardware manufacturers dwarf those
of even the largest PC specialists. Microsoft, the biggest of the latter, billed about
$975 million in 1989; IBM’s software revenues totalled $8.4 billion,!!

Many businesses continue to do some of their own programming—ec.g. banks
and accounting firms. However, for the lion’s share of less specialized needs, the
benefits of purchasing software from outside have become steadily more compel-
ling. These advantages include the following:!2

e Cost. Packaged, off-the-shelf software may cost 10 to 100 times less.

e Auailability. Software already on the market can be quickly evaluated, pur-
chased, and put to work.

e Lower risk. A firm choosing to devclop its own programs may not achieve its
functional goals; even if it does, expericnce shows that development will
probably cost more and take longer than expected.

o Flexibility and manpower savings. Purchasing software minimizes specialized
internal staffing requirements.

® Better documentation. Packaged softwarc includes documentation, which can be
evaluated before purchase. Few companics seem able to enforce high priorities
for good documentation on in-housc software projects.

Against these benefits, managers must weight the possibility of arriving at better
functional solutions to their firm’s particular problems—solutions that might lcad
to proprictary packages, sometimes a potent source of competitive advantage.
Continucd development of fourth-generation languages opens new opportunitics
for companies to get the advantages of proprictary software without the costs of
full-custom programming.

The environment for software today is both highly competitive and technolo-
gically volatile. Some successful companies—Microsoft or Lotus Development
—arec still only a few years old, while older firms like Cullinet and a number of
specialists in computer-aided design have encountered difficulties. High-end
software specialists have sought to expand into other segnients of the market,
while also moving to exploit such technologies as fourth-gencration languages.
Although some kinds of routine software developnient can be handled by pro-
grammers with modest skills, market success often depends on the insights of a
few unusually creative pcople—thosc who can understand what users of spread-
sheets, databasc management systems, or computer graphics really want and
necd, develop expert systenss (a form of Al), or make progress in automating the
gencration of software itself.!* Mergers, acquisitions, and diversification have
bcen commonplace, as firms try to expand their product lines, programming
staffs, and customer bases. The larger user base resulting from falling hardware
prices has led to software price declines, because suppliers can amortize develop-
ment costs over larger unit sales.

Software Industries in Other Countries

With few exceptions, foreign firms lag well behind their US competitors in
softwarc technology and in sales. One reason is simply the large US market for 1T

182 John A. Alic, Jameson R. Miller & Jeffrey A. Hart

of all kinds. US companies have a better chance of covering their up-front design
and development costs at home, giving them wider latitude in setting prices
overseas. The large domestic market also lowers risks, compared with most other
countries, since even a modestly successful product may sell enough copies to
cover fixed costs. Thus, it should not be surprising to see foreign software firms
investing heavily in the USA.

Japan’s Software Suppliers

Although European software firms have been more visible internationally, over
the long run Japan should emerge as the primary US rival in software. Japanese
firms now manufacturc computers that compare well technically with those from
the USA, but international sales have been hampered by poor applications
packages and limited sales and service networks.' In contrast, Japancsc systems
software, based on technology originating in the USA, is usually considered quite
good.'’

The Japancse recognize their deficiencies, and have embarked on a massive
effort to catch up—indeed, to surpass the USA. A few years ago, for instance,
Hitachi spent only 10% of its R&1) money on software; now it allocates more than
30%. Toshiba has pionecred ‘software factories’ housing thousands of program-
mers to work on products for business and industry. Aside from such efforts,
however, the Japancse software industry today resembles that in the USA perhaps
two decades ago—small and not very visible. Independent software firms remain
weak. Skilled programmers have been in short supply. At a time when customized
programs have fallen below 35% of the US market, perhaps 90% of Japancse
applications software continues to be undertaken on a custom basis, often
intcrnally.

This heavy reliance on custom programming is incfficient, and will not persist
indcfinitely; the burgeoning softwarc needs of the Japanese economy can only be
accommodated through greater adoption of standardized applications packages.
Japan's rapidly growing hardware base, now second only to that of the USA, will
force change, and, as they respond to these pressures, Japanese software suppli-
ers will become more aggressive internationally, following the paths marked out
in so many other industrics.

In manufactured goods, Japanese firms have clevated process engineering to a
high art. They are trying to do the same with programming. Software factories
like Toshiba’s reportedly produce high volumes of code with levels of quality
(freedom from errors) and productivity (lines per man-year) substantially higher
than in the USA. By specializing in particular applications—e.g. process-control
packages for nuclear power plants or steel mills, aircraft flight controls—they can
more casily re-use blocks of code, and train programiners narrowly but decply.'$
Thirty per cent or more of a given package may be recycled from past programs,
yielding improvements in both quality and productivity; Toshiba's Software
WorkBench claims an error rate of 0.3 bugs per thousand lines of code, a factor
of 10 below typicat US crror rates.

When the Japancse software industry moves, as it must, towards prepackaged
applications programs, the software factory experience should be of considerable
valuc. Indeed, this is part of the strategy: a Toshiba executive has said. ‘To

Computer Software: Strategic Industry 183

overcome Japan's language problem and compete with the United States, we have
to have productivity double that of the US.’'” The Japanese expect to build
strength in software just as they have in other industries—incrementally, by
steady improvement of existing products and processes.

Of course, releasing a bug-free program means little if it fails to meet user
needs. For general-purpose applications packages with vague and ill-defined
requirements, market success depends first of all on conceptual design. Here,
Japanese software firms generally lack experience (despite the publicity given
‘fuzzy logic’ in Japan). However, if the ideas become available—pcrhaps from US
companies or US software designers hired by Japanese firms—Japan’s experience
base could provide a foundation for future productivity and cost advantages. To
surmount their handicaps in conceptual design, Japan’s software suppliers will
not hesitate to follow semiconductor and automobile firms in establishing design
centres in the USA, or in licensing US inventions (as in Toshiba’s recent move
into workstations using Sun Microsystems’ SPARC technology).

Japan’s difficulties, many of them based on language differences, mask some
real strengths. Efforts to develop Japancse language input-output terminals, and,
more recently, word processing software, provide a useful foundation for some
kinds of applications packages. Programmers in Japan, not surprisingly, prefer to
work in their own language. To cxport software, they must translate not only
code (commands, prompts and comments) into other languages, but also the
accompanying documentation and training materials—an arca of particular weak-
ness. Japanese success in developing kanji-based word processing programs,
however, implies significant advances. These systems interpret keystrokes repre-
senting phonetic combinations, ‘guessing’ the operator’s meaning based on
context and cxpressing that meaning in kanji. Programs that accomplish this
become, in cffect, applications of Al, with potential for transfer to other types of
programs and obvious competitive implications.'® In manufacturing, finally, Japa-
nese companies have implemented simple but sophisticated factory automation
systems, with software alrcady well proven in practical applications: Japanese
software for numerically controlled machine tools, for automated inspection, and
for statistical quality control may be less than innovative—perhaps cven derivative
of US technology—but it works, and works well.

Thus far, however, it is the fifth-generation project that has attracted most of
the attention in thec West. In progress since 1982 under the auspices of the
Institute for New Generation Computer Technology (1COT), the original goal of
the fifth-gencration project was to extend applications of massive computing
power to ordinary users by harnessing Al, natural language input capability, and
very large databases. The Japanesc hoped to leapfrog existing (i.c. US) computer
technologies by turning joint government-industry R&D—a process refined in
Japan over several decades—to the ‘software gap’.' A good deal of scepticism
has been heard in the West (and in Japan) concerning the technical directions
chosen by 1COT. However, as many other joint R&D cfforts in Japan have
demonstrated, focusing exclusively on technology misses the point. These projects
serve many other functions in Japan’s industrial policy system, ranging from
consciousness raising and conscensus building to training technicians and engi-
necrs. In Japan, concerted cffort to build an ‘information economy’ goes back to
the 1960s; the government looks to computers and communications as the
centrepicce of the nation’s future economic structure, one cmphasizing knowl-
edge-intensive, hence software-intensive, goods and services. Individual projects

184 John A. Alic, Jameson R. Miller & Jeffrey A. Hart

like the fifth-generation are only one part of this much larger push, and the
Japanese have already begun to discuss a sixth-generation successor project.

European Industry

Although custom software does not take as large a fraction of sales in Europe as
in Japan, it remains more common than in the USA. Within Europe, Germany is
the largest market, followed by the UK and France. If third as a market, France
nonetheless has the strongest software industry in Europe. Cap Gemini Sogeti,
for instance, the largest European softwarc firm, has becen very aggressive in
seeking growth through acquisitions; the company does more than half its
business outside France. French (and German) computer hardware and
telecommunications equipment manufacturers have also been major players in
software markets, as in the USA and Japan.

At the same time, such US-based computer firms as IBM, Digital Equipment
and Hewlett-Packard have substantial presences in Europe, both in hardware and
softwarc. IBM operates half a dozen Europcan R&D centres, cach undertaking
some work rclated to software. The firm has held about a quarter of the Western
European market for off-the-shelf systems softwarc in recent years; indeed US-
owned firms account for most of the packaged systems programs sold in Europe,
although European supplicrs do better when it comes to custom software. Some
of the independent US firms have invested in European subsidiarics, on occasion
conducting R&D abroad. ADP’s Dutch subsidiary, for example, developed soft-
warc for auto parts wholesalers and rctailers that is now marketed through ADP
offices elsewhere in Furope.

As in the USA and Japan, the fastest-growing portion of Furope’s software
market consists of PC applications packages. European businesses lag significantly
bchind the USA in PC purchascs, even though about as many pcople work in
offices there. Thus it is no surprise that, from their beginnings, US-based
specialists in PC software have sought and found markets in Europe. Today, firms
like Microsoft and Lotus supply software packages in all the major Fuopcan
languages.

Europecan software supplicers, including the computer manufacturers, remain
minor players outside the continent. As in Japan, however, governments have
been funding R&D intended to strengthen capabilities in softwarec—through pan-
Europcan programmes such as ESPRIT (Furopecan Strategic Programme for
Rescarch in Information Technology), funded by the Furopean Community since
1984, as well as national efforts.?

What Should the USA Do?

Lcadership can casily brecd complacency. Many Americans scem to think that
softwarc is somchow special—that countries like Japan will be unable to succeed
as they have in other technologies and other industries. This view is wrong. The
software industry is headed for the same kind of trouble as the semiconductor
industry. US firms may be the innovators, but software development will continue
to demand painstaking attention to detail. Japanese firms have amply demon-
strated their skills in high-quality, error-free products in other industries. Al-
ready, they have begun applying these skills to software. And even without new

Computer Software: Strategic Industry 185

competitive threats, the USA will have to take steps to deal with its domestic
software bottleneck, the consequence of low productivity growth.

The overall problem is much the same as in earlier competitive challenges. US
industry is not slipping. Rather, foreign firms are improving. As the software
industry comes under pressure from abroad, US managers will eventually troop
to Washington and political figures will take up the cause. If past experience is
any guide, there will be little consensus on the nature of the problem, or on
remedies. More than likely, several years will pass in debate with little resulting
action. This has all happened before, notably in semiconductors, where a decade
of trade friction with Japan preceded the effort, through the R&D consortium
Sematech, to address the technological dimensions of the problem.

For the USA, the only way to avoid repeating this story is to begin investing in
stronger technological foundations in software, so that US firms can continue to
move down the learning curve ahead of their rivals overseas. If there is one lesson
that the history of the past two decades should teach, it is the folly of waiting until
an industry is in competitive difficulty before beginning the policy debate. So far,
US software supplicrs have been content to seck stronger protection for intellec-
tual property to help safeguard their edge. This is a slender reed. It cannot hurt,
but will do little to protect the existing lcad.

Intellectual Property Protection

Computer programs are expensive to develop and cheap to produce, inviting
illegal copying. Technical solutions intended to make copying impractical or
impossible have not worked; software pirates quickly find ways around new
protective schemes, no matter how ingenious, just as thieves manage to keep
stealing cars. However, should not stronger protection for intellectual property,
particularly in foreign markets, encourage innovation and safeguard the US Icad?
In fact, matters arc not so simple.

First of all, software, in ctfcct, falls between the stools of copyright and patent
law. Copyrights protect code but not the function or the logical structure of the
program. Because the same functions can be coded in many different ways,
protecting only the code accomplishes little. Software patents protect the func-
tional aspects of a progam—what it docs. Originally, software patents in the USA
were limited by court decision to programs that implemented physical processes
—c.g. controlling a typesctting machine. More recently, the trend has been to
grant patents cven if the link to processes is tenuous.?!

Although patent protection has becomne a more effective means of protecting
softwarc in the USA, intcllectual property law in much of the rest of the world
has hardly begun to confront such questions. The laws in many countries are
weak, and enforcement lax. Some governments ignore copying and counterfeiting
(of many products, not just softwarc). Given the slow pace in multilateral forums
like the World Intellectual Property Organization, the USA has necgotiated
bilatcrally with countries including South Korea, Thailand, and Japan.

Thesc negotiations have made a difterence, but the real question is this: What
would more effective intellectual property protection, in the USA and abroad,
accomplish for the US softwarc industry? Traditionally, the intent has been
viewed as cncouraging innovation through a limited monopoly that rewards those
who pioneer new technology. Indeed carly in this century, patents helped
companics like General Electric and AT&T dominate their industries. However,

186 John A. Alic, Jameson R. Miller & Jeffrey A. Hart

those days are gone. Big business in the USA may still reflect patterns that emerged
in the era of trusts and trust-busting, but in recent years the competitive
significance of patent protection has been restricted mostly to the chemical and
pharmaceutical industries.?? Intellectual property is not irrelevant to the evolution
of computer technology, but it has been a sideshow. Should the US government,
which has had no strategy for software other than to seek stronger protections for
intellectual property, decide to develop one, that strategy should aim at breaking
the productivity bottleneck and creating conditions under which US companies can
improve their innovative capabilities more rapidly than foreign firms.

Technology Policies

The fundamental problems in software are technological, stemming from slow
growth in productivity in programming itself. The Japanese strategy begins with
recognition of the bottleneck, seeking to brecak it through industrialization of
programming and improved quality. From the US perspective, a strategy for
supporting software technology and the softwarc industry might include the
following elements.

(1) Substantial expansion of R&D funding aimed at building the research and
technology basc for software. Program generation will remain an art, but better
tools could improve efficiency and help US firms remain ahead. One route to
greater productivity in programming is to put softwarc on a sounder theoretical
footing. R&D support should come both from DoD), which has been putting
much emphasis on CASE tools, and the National Science Foundation (NSF).

Many US software firms have been caught in the same trap as US semiconduc-
tor firms: putting all their resources into designing next year’s products, to the
neglect of the technology base. Smaller firms, in particular, may have no choice;
this is their only hope for keeping up in a rapidly expanding market. However,
lacking a broad and decp technology base, US firms will find, as the industry
matures, that they do not have the tools to compete with far-sighted foreign firms
that have built carcfully for the future.

(2) A government-wide mandate for purchase of standardized, off-the-shelf software,
instead of the expensive and often ineffective custom programiming that agencies
frequently want. Supporting the US industry through procurement would rein-
force the market forces that already exist.

Private companies have lcarned that standardized, off-the-shelf programs can
mect many of their needs. They can do so for government agencies too, but the
agencies, lacking the discipline of economic competition, do not always realize it.
Packaged software will be the competitive battleground of the future; simply by
buying conunercially available programs, the US government could support those
portions of the domestic industry that will face the most intense competition in
the years ahecad. At the same time, the government could save money by buying
oft-the-shelf. Finally, defence procurements should be simplified to attract
smaller software firms lacking experience in negotiating the burcaucratic maze of
Dol) contracting practices.

(3) Aggressive support for training at all levels, from technicians to graduate-level
software engineers. The software industry grew by attracting people from other
scctors of the economy. As yet, there is little of the sense of professional identity

Computer Software: Strategic Industry 187

that gives focus to older engineering disciplines, and helps create a thriving
professional community.

Well trained people will become an even more vital resource for US software
firms in the future, as the field continues to mature. The problems begin in the
primary and secondary schools, where the foundations for later study must be
laid.2* At the university level, the need is for courses and curricula that focus on
the design of complex software packages that satisfy user needs. Much of this
work is closer to engineering design and to the behavioural sciences than it is to
the applied mathematics emphasis of current academic computer science pro-
grams. More of a focus on software as a professional discipline will be needed to
attract students and provide a large enough pool of well-qualificd pcople for US
firms to draw from in the years ahead. Both NSF and DoD might seek to rapidly
increase their support for graduate students in software engineering, for state-of-
the-art hardware and software for teaching and rescarch purposes, and for
curriculum development in order to provide the legitimacy needed for a secure
academic future. Government agencies should also provide expanded support for
intermediatc-level software training in community colleges.

The steps outlined above will need to be complemented by continuing cfforts to
sccure better- intellectual property protection in overscas markets, and to keep
those markets open for US firms. However, the imperative in software is to break
the productivity bottleneck—a technological problem, not a trade problem.

Conclusion

Software is critical for future cconomic growth and competitiveness. Productive
uscs of digital systems depend on software, giving it significance for the creation
of wealth going far beyond its direct impacts. Taking advantage of a substantial
lead time and large domestic markets, US-based companies have long been
dominant in international competition. In the future, however, this dominance
seems bound to wane, perhaps slowly but none the less inexorably.

Japancse and Furopcan industries, where custom programming is still the
rule, will be forced, sooner or later, to moyve aggressively into the design and
production of more standardized software—the major US strength. Specially
tailored software is expensive, and no longer a good solution to many customer
nceds. Cost pressures will drive suppliers in other countries—especially Japan—
towards the standardized applications packages pionecred by US tirms. As foreign
software companices begin producing these standardized programs, they will more
cffectively confront long-dominant US supplicrs; the Japanese, in particular, will
become more competitive simply because of the imperatives created by their
rapid progress in computer hardware and their competitive strategies for exploit-
ing this hardware. As foreign firms negotiate this transition, some will emerge
better able to compete with US suppliers.

With software increasingly influencing the design of hardware, the Japanese,
in particular, realize they will need major advances in programming capabilities as
they move towards an information-centred economy. Both government and
industry in Japan have made impressive commitments to improving productivity
in programming and to new generations of software technology. The implied
objective is to leapfrog the USA in this seminal technology. Japanese gains will
stem in part simply from a comparatively weak position at the start of real

188 John A. Alic, Jameson R. Miller & Jeffrey A. Hart

competition, in part from the strength of Japan’s electronics industry as a whole.
Fifteen years ago, Japanese companies were behind in computers and semicon-
ductors; concerted efforts, not unlike those now under way in software, led to
steady growth and greater competitiveness.

In the face of these ongoing efforts to catch up, in Europe as well as Japan,
US software firms cannot expect to maintain their current share of the global
market. Still, with the interdependences between hardware and software design
increasing, the enormous domestic market base will be a continuing source of
strength for the US industry. So also with other traditional sources of US
advantage, including a talented workforce, strong in the conceptualization of
complex programs and in grasping new user needs, and substantial R&D spend-
ing from both private and public sources, including defence programmes.

When it comes to government policies, however, the USA seems in danger of
repeating past mistakes. Few in the USA seem as yet to realize the true signifi-
cance of software. Trade friction with Japan in microelectronics, the heavily
publicized Sematech venture, and the subsequent proposal for a joint venture ta
manufacture memory chips, have kept the spotlight on hardware. With policy
makers complacent when it comes to the software lead, the USA risks losing
advantages in a technology even more vital than microelectronics.

Notes and References

1. SDI: Technology, Survivability, and Software (Washington, DC, Office of Technology
Assessment, May 1988), especially Chapter 9.

2. For cxample, both local and wide arca computer networks, now rapidly diffusing
through the civilian economy, utilize technologies stemming from the US Defense
Department’s ARPANET system, developed in the 1960s. On the military roots of the
US computer industry, see International Competitiveness in Electronics (Washington, DC,
Office of Technology Assessment, November 1983), pp. 81-92 and 145-148; and
K. ¥Flamm, Targeting the Computer: Government Support and International Competition
(Washington, DC, Brookings Institution, 1987).

3. W.]. Baumol, S. A, Batey Blackman & E. N. Wolff, ‘Unbalanced growth revisited:
asymptotic stagnancy and ncw cvidence’, American Economic Review, 75, 1985, p. 806.

4. J. A. Alic & R. R. Miller, ‘Export strategics in the computer industry: Japan and the
USA’, Technology Analysis and Strategic Management, 1, 1989, p. 11,

5. These costs range from about $10 per line for routine programs, to as much as $1000
per line for applications extraordinarily demanding in terms of frecdom from errors
(‘bugs’), rcliability, and fault-tolerance—e.g. for the space shuttle. E. |. Joyce, ‘Is
crror-free softwarc achicvable?’, Datamation, 15 February 1989, p. 53. Average
programmer productivity—which varies by 10-20 times or more among indivi-
duals—has been increasing at no more than 5-10% per ycar.

6. Somc cstimates indicate that as much as 80% of maintenance costs go towards
adapting softwarc to customer nceds that were not fully understood when the
development process began, or that changed later. J. Martin and C. McClure, Software
Maintenance: The Problem and Its Solution (Englewood Cliffs, NJ, Prentice-Hall, 1983).
For an idea of the scope of maintenance requirements, note that the worldwide
inventory of programs written in COBOL, still popular for business applications
rcaches 75 billion or more lines of code. On the general problem, sce F. Brooks, ‘No
silver bullet: essence and accidents of software engincering’, IEEE Computer, April
1987, p. 10.

7. With a third-gencration language like BASIC or COBOL the programmer writes
instructions that tell the computer in step-by-step fashion how to proceed. With a
fourth-generation language—more properly termed an applications package—the

10.

11.
12.
13.

14.
15.

16.

17.
18.

Computer Software: Strategic Industry 189

programmer tells the system what the output should be, but not how to achieve that
output. End users may be able to create their own applications programs, combining
the advantages of off-the-shelf purchases with those of a custom package. See Martin
& McClure, op. cit., Ref 6, chapter 11; also J. Martin, Fourth Generation Languages
(Englewood Cliffs, NJ, Prentice-Hall, 1985).
D. Hughes, ‘Computer experts discuss merits of defense dept. software plan’, Aviation
Week & Space Technology, 16 April, 1990, p. 65.
J. Voelcker, ‘Ada: from promise to practice?’ IEEE Spectrum, April 1987, p. 44; R. L.
Hudson, ‘Inventor’s hopes still high for his computer language’, Wall Street Journal,
24 May 1989, p. B2.
M. V. Vasilik, D. R. Woodward & M. P. Galen, Survey of the software industry, M90-26
(Bedford, MA, The MITRE Corporation, 1990); 1989 US Industrial Outlook (Washing-
ton, DC, Department of Commerce, January 1989), p. 26-3. About a third of the
software sales of US firms come from overseas markets.

The MITRE estimate, for 1988, breaks down as follows:

Packaged Software

Independent software firms $ 10 billion
IBM and other hardware suppliers 16
Custom Programming
Commercial 18
Defence 8
Embedded Software
Commercial 15
Defense 18
Other (including telecommunications,
education, and entertainment) 15
Total $100 billion

‘Software’s big 50°, Datamation, 1 December 1990, p. 67; ‘The Datamation 100,
Datamation, 15 June 1990.

W. L. Frank, Critical Issues in Software (New York, Wiley-Interscience, 1983), p. 166.
Little has been written on the division of labour in software generation, but see Philip
Kraft, Programmers and Managers: The Routinization of Computer Programming in the
United States (New York, Spinger-Verlag, 1977).

Alic & Miller op. cit., Ref. 4.

H. J. Welke, Data Processing in Japan (Amsterdam, North-Holland, 1982), Chapter 6;
D. Brandin, et al., JTECH Panel Report on Computer Science in Japan (La Jolla, CA,
Science Applications International Corporation, under contract no. TA-83-
SAC-02254 from the US Department of Commerce, December 1984), p. 3-1. Also
see M. V. Zelkowitz, ¢t al., ‘Software engineering practices in the US and Japan’, IEEE
Computer, June 1984, p. 57. Both Fujitsu and Hitachi continue to make IBM-
compatible computers, while NEC’s operating systems trace their ancestry to Honey-
well products. These operating systems may have origins in US technology, but today
in at least some cases the Japanese versions are superior. One of the objectives of
Japan’s fifth-generation computer project was to help Japanese companies take the
next step in breaking free of their remaining dependence on US software.

The specialities given are those of the Software WorkBench of Toshiba Fuchu—
Brandin et al., op. cit., Ref. 15, pp. 3-3 to 3-4.

‘Software: the new driving force’, Business Week, 27 February 1985, p. 98.

Sales of Japanese-language word processors—mostly dedicated machines rather than
PCs—took off in 1985; average prices dropped by a factor of five, and output rose
from about 200,000 units to nearly 1 million. Production doubled again the next
year, and by 1989 about 2.8 million word processors were sold in Japan, plus 1.6
million PCs. H. Morita, ‘Character processing’, Business Tokyo, July 1988, p. 27;

190 John A. Alic, Jameson R. Miller & Jeffrey A. Hart

19.

20.

21.

22.

23.

K. Mori & T. Kawada, ‘From kana to kanji: word processing in Japan’, IEEE Spectrum,
August 1990, p. 46.

On Japan’s approach to joint government-industry R&D, including the objectives of
the fifth-generation project, see Alic & Miller, op. cit.,, Ref. 4. One of the more
important of the earlier efforts, the Pattern Information Processing System (PIPS)
project, helped Japanese companies develop technologies for input devices that could
accept kanji characters. H. Nishino, ‘PIPS (Pattern Information Processing System)
project—background and outline’, Proceedings of the 4th International Joint Conference
on Pattern Recognition, 7-10 November 1978, Kyoto, Japan (International Association
for Pattern Recognition, 1978), pp. 1152-1161. The more recent SIGMA project
(Software Industrialized Generator and Maintenance Aids), initiated in 1985 by the
Information Technology Promotion Agency, has had more modest-seeming but just
as noteworthy objectives: increased productivity in programming through software
engineering techniques and automation. This effort, with a five-year budget totalling
about $200 million and involving more than 175 companies, was originally scheduled
to end in 1989, but has been extended. ‘Sigma Project: its status and future
prospect’, Report Memorandum #148, Tokyo Office of the US National Science
Foundation, 9 February 1988.

In mid-1988, despite many voices urging that the UK’s Alvey Programme be con-
tinued, the government declined to extend it, stating that worthy projects should
begin competing for R&D funds under ESPRIT. S. Watts, ‘Alvey epilogue looks to
the future’, New Scientist, 14 July 1988, p. 4I; also Advisory Council for Applied
Research and Development, Software: A Vital Key to UK Competitiveness (London, Her
Majesty’s Stationary Office, 1986).

A number of developing nations are also seeking to build viable software indus-
tries, notably India, Singapore, Taiwan, and Brazil. India has perhaps been most
aggressive, seeking to exploit its large pool of chronically underemployed university
graduates. K. K. Sharma, ‘India signs up the world for its software’, Financial Times,
23 February 1989, p. 3. Several US companies, including Texas Instruments and
Citicorp, have established software development facilities in India, while others have
contracted out programming to local firms. Singapore and Taiwan have also sought to
establish themselves as centres for software development, but have faced acute
shortages of trained people. See, in general, Thierry Noyelle, ‘Computer software and
computer services in India, Singapore, the Phillippines, Hong Kong and the Republic
of Korea’, Report to UNCTAD, Conservation of Human Resources, Columbia
University, July 1990.

Brazil’s approach has been different—an infant industry strategy relying on trade
barriers to keep out foreign firms, thus reserving the market for local suppliers,
including manufacturers of computer hardware and telecommunications equipment.
For a broad review of Brazilian policies, see Transborder Data Flows and Brazil (New
York, United Nations Centre on Transnational Corporations, 1983); also C. Frischtak,
‘Brazil’, in F. W. Rushing & C. G. Brown (eds), National Policies for Developing High
Technology Industries (Boulder, CO, Westview. 1986), p. 31.

W. M. Bulkeley, ‘Will software patents cramp creativity?’, Wall Street Journal, 14
March 1989, p. Bl.

R. C. Levin, A. K. Klevorick, R. R. Nelson & S. G. Winter, ‘Appropriating the returns
from industrial research and development’, Brookings Papers on Economic Activity, 3
1987, p. 783.

In tests of 13-year-olds, administered during 1988 by the Educational Testing Service
to random samples of about 1000 students from five countries, American students
ranked last in mathematics and fourth in science. A. E. Lapointe, N. A. Mead & G. W.
Phillips, A World of Differences: An International Assessment of Mathematics and Science
(Princeton, NJ, Educational Testing Service, 1989).

’

